E: ISSN No. 2349-9443 Asian Resonance Aquatic Macrophytic Diversity of Urpod Beel, Goalpara District of Assam, India

Sikha Rani Kalita Assistant Professor, Deptt.of Zoology, SBMS College, Sualkuchi, Assam

Kamal Choudhury Assistant Professor, Deptt.of Botany, SBMS College, Sualkuchi, Assam

Abstract

An investigation was carried out to evaluate the present status of Macrophytic diversity of Urpod beel, Goalpara, Assam, situated in between 25° 33' to 26° 12' N latitude and 90° 7' to 91° 5' E longitude. The study was carried out during Dec, 2014 to Nov, 2015. Total 74 species belonging to 54 genera and 30 families were observed in present macrophytic diversity. Out of 74 species, 3 species were from Pteridophytes belonging to the families Marsiliaceae and Salviniaceae and others from Angiosperms among which 36 species were Dicotyledons under 17 families and 35 species were from Monocotyledons under 11 families. The study reveals that the macrophytic vegetation of the Urpod beel appears to be relatively high with respect to the diversity of Marshy Amphibious (MA) 22.97%, Submerged Aquatic (SA) 25.67%, Emergent Aquatic (EA) 24.32%, Floating Aquatic (FA) 18.91% and Free Floating (FF) 8.1%. The finding of this study is expected to provide baseline information on biodiversity of this beel.

Keywords: Macrophytic Diversity, Urpod Beel Introduction

The wetlands provide habitat for a large variety of flora and fauna. It maintains the ecosystem of an area by sheltering many species of aquatic plants, fishes, insects etc. Wetlands are potentially rich in aquatic resources, which play a significant role in maintaining biodiversity. They offer habitat suitable for support growth of a variety of aquatic life forms. The term aquatic macrophyte refers to macroscopic vegetation including angiosperms, ferns, mosses, liverworts and some freshwater macro-algae that occur in seasonally or permanently in wet environments (Chambers *et al.*, 2008). The macorphytic vegetations may be classify in to Submerged aquatic (SA), Floating aquatic (FA), Emergent aquatic (EA), Free-floating (FF) and Marshy amphibious (MA) (Sculthorpe, 1985; Padial *et al.*, 2008).

The aquatic macrophytes are the important source of food, fodder, herbal medicine and domestic household materials for the people residing in its vicinities. Aquatic macrophytic diversity and its role in understanding the beel ecosystem have tremendous significance. Aquatic macrophytes represent as an important habitat for fish. Many young fish need aquatic macrophytes as shelter and protection from predation or to avoid cannibalism. Aquatic macrophytes also serve some fish as a spawning habitat, for the attachment of eggs, and some fish form nesting sites among the macrophytes (Cowx and Welcomme, 1998).

Aim of the Study

The present investigation was designed to monitor the aquatic macrophytic diversity of Urpod beel, Goalpara district of Assam during December, 2014 to November, 2015.

Review of Literature

Aquatic macrophytes diversity and its role in understanding the beel ecosystem have tremendous significance. Some notable works available on macrophytes are Dey and Kar, 1989; Goswami,1997; Mcfarland and Rogers, 1998; Sarma and Devi, 1999; Goswami *et al.*, 1999; Baruah and Baruah, 2000; Lacoul and Freedman, 2006; Chambers *et al.*, 2008; Deka *et al.*, 2010; Baruah *et al.*, 2011; Harkal *et al.*, 2011; Borah and Sarma, 2012; Bordoloi, 2014; Sarma and Deka, 2014; Dutta *et al.*, 2014; Mili and Acharjee, 2014; Deka and Sarma, 2015 etc.

Materials and Method

Description of the Study Area

Urpod Beel is situated at Agia in Goalpara district of Assam. The geographical location of the district is approximately in between the latitude of 25° 33' to 26° 12' N and longitude of 90° 7' to 91° 5' E. The climate of the

P: ISSN No. 0976-8602

RNI No.UPENG/2012/42622 VOL.-V. ISSUE-IV. October-2016

Asian Resonance

E: ISSN No. 2349-9443

district is hot and humid in summer and dry and cool in winter. The Urpod Beel is surrounded by 10 villages and the some villagers earned their livelihood by fishing in the Beel. This beel is connected with Pataka Beel by a small drain located in the eastern side. Perennially, the Beel is fed by Jinziram and Jinari, both are the tributaries of river Brahmaputra.

Analysis of Macrophytes

During the present study, monthly surveys to record, collect and identify the aquatic macrophytes were carried out from December, 2014 to November, 2015. The aquatic plants were collected and they were photographed, packed in the plastic bags for making dry herbarium or kept in the bottles filled with 70% formalin aceto alcohol (FAA) and taken to the laboratory for further identification.

The macrophytes were identified with the help of standard key and literature like Flora of British India (Hooker, 1872-1897); Flora of Assam (Kanjilal et al., 1940, Bor, 1940); Aquatic and Wetland Plants of India (Cook, 1996); Illustrated Aquatic and wetland Plants in Harmony with Mankind (Ghosh, 2005); Floristic Diversity of Assam (Bora and Kumar, 2003) and consulting the herbaria of Department of Botany, Gauhati University and Kanjilal Herbarium, Shillong, Meghalaya, India.

Results of the Study

Macrophytic Diversity

During the present study 74 species belonging to 54 different genera, 30 families were

recorded from Urpod beel, Goalpara, Assam are shown in tabular form (Table 1 & Fig. 2) with their reproductive phases. Out of 74 species 3 species were from Pteridophytes belonging to 2 families and others were Angiosperms. Among Angiosperms 36 species were Dicotyledons under 17 families and 35 species from Monocotyledons under 11 families.

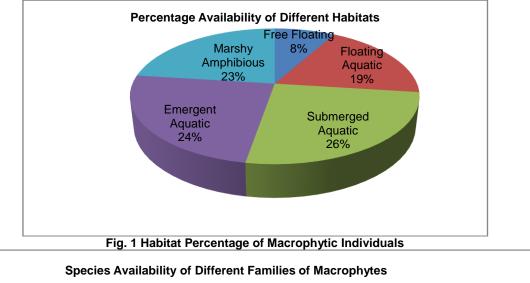
Among the observed Macrophytes, 17 species were belonging to Marshy amphibious (MA), 14 species were Floating aquatic (FA), 19 species were Submerged aquatic (SA), 18 species were Emergent aquatic (EA) and six species were found as Free floating (FF). Family Poaceae and Hydrocharitaceae are dominated with 6 species followed by Nymphaceae, Onagraceae, Polygonaceae, Lamnaceae and Cyperaceae with of 4 species each; Menyanthaceae, Convolvulaceae, Commelinaceae, Potamogetonaceae are of with 3 species each; Holograceae, Apiaceae, Astaraceae, Scrophularaceae Amaranthaceae, Caratophyllaceae, Pontederiaceae, Alismataceae, Salvinaceae are of with 2 species each and other 14 families are monospecific. Habitat of Submerged Aquatic (SA) was most dominant constituting 25.67%, followed by Emergent Aquatic 24.32% and Marshy Amphibious 22.97%, Floating Aquatic constituting 18.91%, Free floating constituting 8.1% each of the total macrophytic species (Fig. 1).

S. No.	Name of species	Family	Habit	Reproductive Phase
1	Euryale ferox Salish	Nymphaeaceae	FA	May – Jul.
2	Nymphaea pubescens Willd.	Nymphaeaceae	FA	June – Nov.
3	<i>N. nouchali</i> Burm f	Nymphaeaceae	FA	Jul. – Oct.
4	<i>N. rubra</i> Roxb. ex. Salisb,	Nymphaeaceae	FA	Aug. – Dec.
5	Nelumbo nucifera Gaetrn.	Nelumbonaceae	FA	JulyOct.
6	Oxalis corniculata L.	Oxalidaceae	MA	May – Dec.
7	Myriophyllum tetrandrum Roxb.	Haloragaceae	FA	May – Nov.
8	<i>M. tuberculatum</i> Roxb.	Haloragaceae	FA	Jan. – Dec.
9	Ludwigia adscandans (L.) Hara.	Onagraceae	FA	Jun – Oct.
10	L. parviflora Roxb.	Onagraceae	EA	June – Oct.
11	L. perennis L.	Onagraceae	EA	Aug. – Dec.
12	Jussiea repens L.	Onagraceae	EA	Mar. – Dec.
13	Trapa natans L.	Trapaceae	FA	Jul. – Dec.
14	Centela asiatica L.	Apiaceae	MA	Jan. – Dec.
15	Oenanthe javanica (Bl.) DC	Apiaceae	EA	Mar. – May
16	Enhydra fluctuans Lour.	Asteraceae	EA	Mar. – Dec.
17	Grangea maderaspatana Poir.	Asteraceae	MA	Apr. – Nov.
18	Nymphoides cristatum Roxb.	Menyanthaceae	FA	SeptOct.
19	<i>N. indica</i> (L.) Kunze	Menyanthaceae	FA	SeptOct.
20	N. parvifolium Kuentz.	Menyanthaceae	FA	MarNov.
21	Heliotropium indicum L.	Boraginaceae	MA	May – Aug.
22	Ipomoea aquatica Forsk.	Convolvulaceae	EA	Sept. – Feb.
23	<i>I. carnea</i> Jaeq.	Convolvulaceae	EA	Sept. – Feb.
24	I. obscura L.	Convolvulaceae	EA	Aug. – Sept.
25	Limnophilla indica L.	Scrophulariaceae	SA	July – Dec.
26	L. heterophylla	Scrophulariaceae	SA	Aug. – Jan.
27	Utriculara scandens Ben.	Lentibularaceae	SA	July – Nov.
28	Alternanthera philoxeroides L.	Amaranthaceae	EA	Oct. – Feb.
29	A. sessilis L.	Amaranthaceae	MA	Jan. – Dec.

Table 1: - List of Aquatic Macrophytes Along with their Habitat and Reproductive Phases

RNI No.UPENG/2012/42622 VOL.-V, ISSUE-IV, October-2016

E: ISSN No. 2349-9443


Asian Resonance

30	Polygonum . barbata L	Polygonaceae	MA	Oct. – Mar.
31	P. hydropiper L.	Polygonaceae	MA	Oct. – Mar.
32	P. orientalis L.	Polygonaceae	MA	Apr. – Sept.
33	Rumex nepalensis Spreng.	Polygonaceae	MA	Apr. – Jul.
34	Podostemon subulatus Gardn.	Podostemaceae	SA	Jun. – Oct.
35	Ceratophylum demersum L.	Ceratophyllaceae	SA	Jan June
36	<i>C. tuberculatum</i> Chan.	Ceratophyllaceae	SA	
30	Hydrilla verticillata (Lf.) Royle	Hydrocharitaceae		Jan. – Mar.
			SA	Oct. – Mar.
38	Hydrocharis dubia (BI) Back.	Hydrocharitaceae	SA	Mar. – Nov.
39	Blyza auberti Rich.	Hydrocharitaceae	SA	Jan. – Nov.
40	B. echinosperma (Clarke) Hook	Hydrocharitaceae	SA	Jan. – Nov.
41	Ottelia alismoids (L.) Pers.	Hydrocharitaceae	SA	Aug Nov.
42	Valisneria spiralis L.	Hydrocharitaceae	SA	MarNov.
43	Eichhornia crassipes Solms.	Pontederiaecae	FF	Jan. – Dec.
44	Monochoria hastata (L.) Solms.	Pontederiaecae	EA	Feb. – Nov.
45	Commelina benghalensis L.	Commelinaceae	MA	Jan. – May
46	Floscopa scandens Lour.	Commelinaceae	EA	Jan. – Jun
47	Murdannia nudiflora L.	Commelinaceae	MA	Jul. – Jan.
48	Alocasia fornicata (Roxb.) Schott	Araceae	MA	May – Sept.
49	Colocassia esculanta L.	Araceae	MA	May – Sept.
50	Pistia stratiotes L	Araceae	FF	Jun – Sept.
51	<i>Lemna perpusilla</i> Torr.	Lamnaceae	FF	May – Aug.
52	L. paucicostata Hegelm	Lamnaceae	FF	May – Aug.
53	Spirodela polyrhiza L.	Lamnaceae	SA	Jan. – May.
54	Wolffia globosa Hartog & Plas.	Lamnaceae	FA	Jun. – Sept.
55	Sagittaria sagittifolia L,	Alismataceae	EA	Feb. – Apr.
56	Alisma plantago-aquatica L.	Alismataceae	SA	Feb. – Apr.
57	Najas minor Al.	Najadaceae	SA	Jan. – Dec.
58	Potamogeton crispus L.	Potamogetonaceae	SA	Mar. – Dec.
59	P. peclinatus L.	Potamogetonaceae	SA	Mar. – Dec.
60	P. perfoliatus L.	Potamogetonaceae	SA	Jan. – Dec.
61	Eriocaulon setaceum L.	Eriocaulaceae	SA	Jun. – Aug.
62	Cyperus compressus L.	Cyperaceae	MA	July – Nov.
63	C. iria L.	Cyperaceae	MA	Aug Dec.
64	C. rotundus L.	Cyperaceae	MA	Mar. – Nov.
65	Eleocharis congesta D. Don.	Cyperaceae	MA	Sept. – Dec.
66	Arundo donax L.	Poaceae	EA	Aug. – Jan.
67	Hygroryza aristata Nees.	Poaceae	EA	Sept. – Mar.
68	Leersia hexandra Swartz	Poaceae	EA	Jan. Dec.
69	Oryza rufipogon Griffith, Notul	Poaceae	EA	Oct. – Jan.
70	Phragmites karka (Retz.) Trin	Poaceae	EA	Sept. – Jan.
71	Setaria gluca Beauv	Poaceae	EA	Mar. –Nov.
72	Marsilea quadrifolia L.	Marsiliaceae	FA	May. – Sep.
73	Azolla pinnata R.Br	Salviniaceae	FF	Mar. – Nov.
74	Salvinia natans Hoffins.	Salviniaceae	FF	May – Sep.
	MA Marahy Amerikiaya, EA	Election convetion CA	Culture	

MA = Marshy Amphibious; FA = Floating aquatic; SA = Submerged aquatic; EA = Emergent aquatic; FF = Free Floating

E: ISSN No. 2349-9443

Asian Resonance

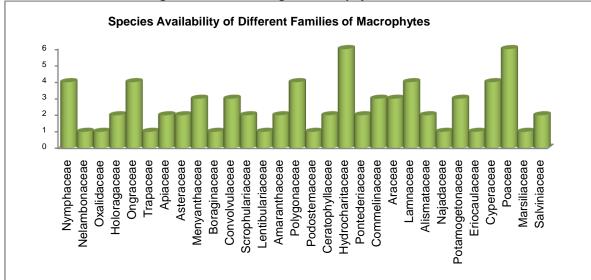


Fig. 2 Species Availability of Different Families of Macrophytes Present in the Study Area

Discussion

The Urpod beel appears to be relatively high with respect to the biodiversity of submerged aquatic and emergent aquatic macrophytes. The floating aquatic and free-floating plants Eicchornia crassipes, Azola pinnata, Pistia stratiotes, Lamna perpusila are exist throughout the year and they become plentiful during the summer. The floating and submerged aquatic plants dominate the Urpod beel habitat. The foremost were the Euryle ferox, Nymphea rubra, Trapa natans, Azolla piñata, Marselea guadrifolia, Valisnaria spiralis, Hydrilla verticillata etc. The weeds which were prevalent in the cropped area are Heliotropium indicum, Alternanthera sessilis. Polygonum hydroiper, Ρ. barbatum, Rumex nepalensis, Cyperus compressus, C. irea, С. rutundus, Eleocharis congesta etc.

Conclusion

Vigorous growth of marginal macrophytes; emergent, sub emergent and floating vegetation cause silting of the beel. A large part of the Urpod beel is now covered by water hyacinth. The intensive fishing activities, settlements and permanent agriculture are steadily encroaching on the wetland

and reducing the extent of the marsh vegetations. The entire beel area is utilizing as a traditional fishing ground by the inhabitants of surrounding villages. The wetland produce a large quantity is each year which supports poor families of Fishermans of the villages surrounding the beel as their sources of income. The beel plays an important role in maintaining the environmental quality of the areas and its vicinity and also of the Goalpara town. So it is essential to conserve the beel for the future generation. References

- Baruah, D., Borah, S., Hazarika L.P., Dutta, R., Bakalial, B., Biswas, S.P., Sarma, S.K. (2011): A simple diagnostic tool for measuring river health example from a tropical snow fed river. Annal of Biological Research. 2 (5): 432-443.
- Baruah, P.P., Baruah, C.K. (2000): Study of the 2. hydrophytic flora of Kaziranga National Park, Assam, India. Annals of Forestry. 8 (2): 170-178.
- 3. Borah, B., Sarma, S.K. (2012): Phytosociological investigation visa vis human impact on two wetlands of Sonitpur district of Assam, India. Journal of Advance plant Sciences. 6 (5 & 6): 91-101.

P: ISSN No. 0976-8602

RNI No.UPENG/2012/42622 VOL.-V. ISSUE-IV. October-2016

E: ISSN No. 2349-9443

- Bordoloi, R. (2014): A comparative study of 4 aquatic macrophytes and its primary Productivity in the closed and open type wetlands of upper Reaches of the Brahmaputra river basin. J.Bio.Innov 3 (2), pp: 103-116.
- 5. Bora, P. J. and Kumar, Y. (2003): Floristic diversity of Assam. Study of Pabitora Wildlife sanctuary. Daya Publishing House. Delhi-110035.
- 6. Bor, N.L. (1940): Flora of Assam Vol. V, Govt. of Assam, Shillong.
- Chambers, P.A., Lacoul, P., Murphy, K.J. and 7. Thomaz, S.M. (2008): Global diversity of aquatic macrophytes in fresh water. Hydrobiologia, 595 (I): 9-26.
- 8. Cook, C. D. K. (1996): Aquatic and wetland plants of India. Oxford University Press, New York.
- 9. Cowx, I.G. and Welcomme, R.L. (1998): Rehabilitation of Rivers for Fish. Fishing News Books, Oxford. 160.
- 10. Deka, S.J., Sarma, G.C., Baishya R. and Deka, S.P. (2010): Phenological study of Macrophytes of some selected wetlands of Goalpara distric Assam, India. Plant Archives, 10 (1) 165-170.
- 11. Deka, U. and Sarma, S.K. (2015): Ecological studies of macrophytes of two major wetlands of Nalbari district of Assam, India. New York Science Journal 8 (1): 45-52.
- 12. Dey, S.C. and Kar, D. (1989): Aquatic Macrophytes of lake Sone in Assam. Env. Eco. 7 (1): 253-254.
- 13. Dutta, T., Deka, U. and Rabha, P.K. (2014): Diversity of aquatic macrophytes of Kapla beel (wetland) of Barpeta district, Assam, India. Annals of Biological Research, 5 (12):41-45
- 14. Ghosh, S. K. (2005): Illustrated Aquatic and Wetland Plants in Harmony with Mankind. Standerd Literature, Kolkata .
- 15. Goswami, M.M. (1997): Beels the prime Inland fishery resources of Assam. Summer school of

Asian Resonance fisheries Enhancement in small reservoirs and

flood plain lakes. CIFRI Bull. No. 75: 179-185.

- 16. Goswami, M.M., Deka, M., Singh, T.K., Sarma, P.K. and Kakoti, M. (1999): Studied on some wetlands of Assam with reference to the Eutrophication stress. J. Inland Fish Soc. India, 31(2): 39-43.
- 17. Hooker, J. D. (1872-1897): Flora of British India. Vol. 1-7, London.
- 18. Kanjilal, U.N., Kanjilal, P.C., Das, A. and R.N. De. (1940): "Flora of Assam" Vol. I-IV, Govt. of Assam, Shillong.
- 19. Kulstreshtra, S.K. (2005): Biodiversity of tropical ecosystem Anmol pub. New Delhi.
- 20. Lacoul, P. and Freedman, Β. (2006): Environmental Influences on Aquatic plants in freshwater ecosystems. Environ, rev.14 (2): 89-136.
- 21. Mcfarland, D.G. and Rogers, S.J. (1998): The aquatic macrophyte Seed Bank in Lake Onalaska, Wisconsin. J. Aquat. Plant Manage. 36: 33-39.
- 22. Mili, N. and Acharjee, S. (2014): Conservation and Management of Wetlands in Pandihing Bird Sanctuary of Sibsagar District, Assam. Frontiers in Environmental Engineering (FIEE) Vol. 3.
- 23. Padial, A.A., Biny, L.M. and Thomaz. S.M. (1998): The study of aquatic macrophytes in Neotropic: a scientometrical view of the main trends and gaps. Braz. J. Biol. 68 (4): 1051-1059.
- 24. Sarma, S.K. and Deka, U. (2014): Quantitative analysis of macrophytes and physico-chemical roperties of water of two wetlands of Nalbari district of Assam, India. Annals of Biological Research, 5 (5):77-84
- 25. Sarma, G.C. and Devi, N. (1999): Survey of aquatic flora of Goalpara District. Adv. Pl. Sci.Res. India, IX: 97-104.
- 26. Sculthorpe, C.D. (1985): The biology of aquatic vascular plants. Konigstein-West Germany: Koeltz Scientific Books. 597.